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The Upside/Downside of Faster, Better, Cheaper

Image Credit: NASA/JPL/Malin
Space Science Systems

Dr. Steve Jolly
Lockheed Martin Space Systems
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  1. [Unnamed], USSR, 10/10/60, Mars flyby, did not reach Earth orbit 
  2. [Unnamed], USSR, 10/14/60, Mars flyby, did not reach Earth orbit 
  3. [Unnamed], USSR, 10/24/62, Mars flyby, achieved Earth orbit only 
  4. Mars 1, USSR, 11/1/62, Mars flyby, radio failed
  5. [Unnamed], USSR, 11/4/62, Mars flyby, achieved Earth orbit only 
  6. Mariner 3, U.S., 11/5/64, Mars flyby, shroud failed to jettison 
  7. Mariner 4, U.S. 11/28/64, first successful Mars flyby 7/14/65
  8. Zond 2, USSR, 11/30/64, Mars flyby, passed Mars radio failed,  no data
  9. Mariner 6, U.S., 2/24/69, Mars flyby 7/31/69, returned 75 photos
10. Mariner 7, U.S., 3/27/69, Mars flyby 8/5/69, returned 126 photos
11. Mariner 8, U.S., 5/8/71, Mars orbiter, failed during launch
12. Kosmos 419, USSR, 5/10/71, Mars lander, achieved Earth orbit only 
13. Mars 2, USSR, 5/19/71, Mars orbiter/lander arrived 11/27/71, no useful data
14. Mars 3, USSR, 5/28/71, Mars orbiter/lander, arrived 12/3/71
15. Mariner 9, U.S., 5/30/71, Mars orbiter, in orbit 11/13/71 to 10/27/72
16. Mars 4, USSR, 7/21/73, failed Mars orbiter, flew past Mars 2/10/74
17. Mars 5, USSR, 7/25/73, Mars orbiter, arrived 2/12/74, lasted a few days
18. Mars 6, USSR, 8/5/73, Mars orbiter/lander, arrived 3/12/74, little data 
19. Mars 7, USSR, 8/9/73, Mars orbiter/lander, arrived 3/9/74, little data 
20. Viking 1, U.S., 8/20/75, orbiter/lander, orbit 6/19/76-1980, lander 7/20/76-1982
21. Viking 2, U.S., 9/9/75, orbiter/lander, orbit 8/7/76-1987, lander 9/3/76-1980
22. Phobos 1, USSR, 7/7/88, Mars/Phobos orbiter/lander, lost 8/89 en route 
23. Phobos 2, USSR, 7/12/88, Mars/Phobos orbiter/lander, lost 3/89 near Phobos
24. Mars Observer, U.S., 9/25/92, lost just before Mars arrival 8/21/93
25. Mars Global Surveyor, U.S., 11/7/96, Mars orbiter, arrived 9/12/97
26. Mars 96, Russia, 11/16/96, orbiter and landers, launch vehicle failed 
27. Mars Pathfinder, U.S., 12/4/96
28. Nozomi (Planet-B), Japan, 7/4/98, Mars orbiter, failed to capture
29. Mars Climate Orbiter, U.S., 12/11/98, lost upon arrival 9/23/99
30. Mars Polar Lander, U.S., 1/3/99
31. Deep Space 2, Probes, U.S., 1/3/99
32. 2001 Odyssey, U.S., Mars Orbiter, launched 4/7/01
33. Mars Express, ESA, Mars Orbiter, launched 6/03
34. Beagle 2, ESA, Mars Lander, launched 6/03, no contact since EDL
35. Spirit, U.S., Mars Rover, launched 6/10/03
36. Opportunity, U.S., Mars Rover, launched 7/7/03
37. Mars Reconnaissance Orbiter, U.S., Mars Orbiter, Launched 8/12
38. Phoenix, U.S., Mars Lander, Launched 2007

Historical (Hysterical?) Mars Missions

37% success rate …



Mars Surveyor ’98 Project “Characteristics”
• “Faster, Better, Cheaper”
• Eliminate all non-value added activities
• Small Project Office management team
• Risk OK, but manage carefully
• Single string operation for critical operations where on line redundancy

would require significant complexity
• Maximize commonality in hardware and software between vehicles
• No NASA budget increases
• Minimal IV&V
• Heavy dependence on heritage hardware and operations



The Failures
• Mars Climate Orbiter

The mission loss was precipitated by an error in the (ground ) software
program that generated the Angular Momentum Desaturation files.  …the
files containing the magnitudes of the small forces impulses applied to the
spacecraft had been delivered in English units (pounds-force seconds)
instead of metric units (Newton-seconds).

• Mars Polar Lander
The probable cause of the loss of MPL has been traced to premature
shutdown of the descent engines, resulting from a vulnerability of the
(flight) software to transient signals.

• Systems Engineering Criticisms
In Some Cases Failed In Executing What Were Good Processes
Risk Management Was Too Informal
Risk Accumulated Incrementally Resulting in a Riskier Mission Than We

All Recognized (MPL)



• Project significantly under funded for low risk (30%
min)

• Needed more independent technical review and
IV&V

• Needed more rigorous application of Mission
Success principles
– 2 page procedure then, 14 page checklist now
– “Test like you fly”, elimination of single person error

opportunities are most important elements
• Keep track of “near misses” – an indicator of

project health
• Very fine line between success and failure in these

one-of-a-kind cost constrained programs

Looking Back: The Lessons (2002)



 Lockheed Martin Space Systems Company
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2002 MAPLD Conference

• So we have had 6 more years to reflect on
FBC and the Mars 98 failures

• And several missions have been conceived
and flown since then – including the “clean
sheet” MRO and the resurrected Mars 01
Lander, now Phoenix

• Here are 10 topics (controversial?) that we
all have stories about …
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1. $ in perspective

Image Credits: NASA/JPL/Lockheed Martin
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2. Must become masters of
the technology of our day

Orion Crew Module Physical 

and Functional Interfaces
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Structures

Thermal Protection System

Passive Thermal Control

Mechanisms 1

Propulsion 2

Power 3

Command & Data Handling 4

Communication & Telemetry 5

Crew Interface 6

Software 7 8 9 10 11

Guidnace, Nav. and Control

ECLSS

Crew Systems

Recovery & Landing System

Active Thermal Control

NASA
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3. Lost the recipe from
Viking?

Image Credits:NASA/JPL
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4. Everyone is not a
systems engineer
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System Resource/Mission Phase SDR PDR CDR ATLO start Launch

Mass 25% 20% 15% 10% 3%

Energy/Power 30% 20% 15% 10% 10%

Power Switches 35% 30% 20% 15% 10%

CPU Utilization 75% 60% 50% 30% 20%

Memory

   SSR (Bulk storage) 30% 20% 20% 15% 10%

   DRAM 75% 60% 50% 30% 20%

   NVM (Flash) 75% 60% 50% 40% 30%

   SFC EEPROM 75% 60% 50% 40% 30%

Avionics

   Serial Port Assignments 3 3 2 2 2

   Bus Slot Assignments 3 2 2 1 1

   Discrete I/O 30% 20% 15% 12.50% 10%

   Analog I/O 30% 20% 15% 12.50% 10%

Earth to S/C Link(C) 3 db 3 db 3 db 3 db 3 db

Link Margin Bit Error Rate (3 sigma) 1.00E-06 1.00E-05 1.00E-05 1.00E-05 1.00E-05

Bus Bandwidth 60% 60% 55% 55% 50%

Mission Data Volume 20% 20% 15% 10% 10%

ASIC/FPGA Gates Remaining 40% 30% 20% 15% 10%

Crew IVA Time 40% 30% 20% 10% 10%
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5. Why can’t the
system be calculated
to a first-order on a
white board? Why
only by Sims and
Monte Carlo’s …

Rate Damp
Through drag pass on

Loose Deadbands

5 minute
Guardband

Accel Bias Calc
@ Drag start – 30 min

Telemetry
Playback (2)

RWAs to Tach Profile
“Free Desat”

Start PTE
Power 2ndary Gimbals

Transition to Thruster Control

Reconfigure Telecom
LGA, Carrier only

@ Drag start – 15 min

Slew to Drag Attitude
@ Drag start – 10 min

5 minute
Guardband

Stop PTE
Turn Off  2ndary Gimbals

Back to RWA Control
Slew to Vacuum Attitude

Back to Earthpoint
@ Drag End + 10 min

Reconfigure Telecom back to HGA
Accel Bias Calc

Telemetry
Playback (3)

Telemetry
Playback (1)
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6. Mathematical
reliability, really?

Common mode failure …

Image Credits: NASA
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EPS/C&DH BLOCK :

P Thrust = P AACS * (1-(1-PSA * (1-(1- PBATT )
2 ) * PCCU * PPDDU * PPIU * PC&DH )

2 )* P REM

P T_MOI = P AACS * (1-(1-PSA * (1-(1- PBATT )
2 ) * PCCU * PPDDU * PPIU * PC&DH )

2 )* P MOI

EPS/C&DH X-Strap :

P Thrust = P AACS * (1 -(1-PSA * (1-(1- PBATT )
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The simultaneous loss of 4 of 6

Russian module computers on ISS, in

2007 due to water condensation in a

zero-g environment
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7. There are
thousands of ways
to fail … most have
not been explored
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8. Designing for earth-
bound validation

Image Credits: NASA and NASA/JPL
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9. Success can spur
us on to failure …

Image Credits: NASA-JPL and NASA/JPL/Malin Space
Science Systems
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10. Must not be paralyzed by fear of failure

Odyssey 2001Colorado-Denali 1999
SUCCESS!

MCO        1999

FAILURE
Karstens Ridge 1986

Denali Mars

MPL 1999

West Buttress 1995
FAILURE


